Answers – Number

Number

Page 2 Standard Form						
1. 1.34 x 10 ¹¹	5.	9.98 x 10 ⁻⁵	9.	40 900	13. 510 100 000) km ²
2. 5.21 x 10 ⁻⁸	6.	50.6	10.	0.000 030 04	Problem Solvi	ng
3. 2.08×10^4	7.	0.2022	11.	9.8 x 10 ⁻³	0.099 mm (2 sf)
4. 4.0×10^9	8.	0.000 000 08	12.	6.0 x 10 ¹⁰	or 0.0099 cm (2	sf)
Page 3 Rounding Numb						
1. 45.63 m (2 dp)	5.	1		1.00 (2 dp)	13. \$14.67 each	ı
2. 46 m (2 sf)		100 (1 sf)		. 13 000 (2 sf)	Problem Solvi	ing
3. \$245.76	7.	2.0 (2 sf)		55 m^2	62, 64, 64, 64, 6	64, 64,
4. 68.353 (3 dp)	8.	65.00 (2 dp)	12.	. Original 4 sf so answer should be 9.954 m^{2}	64, 64, 65	
Page 4 Applications of F	Rour	nding				
1. \$726.06	3.	\$92.87	5.	\$36	7. \$2.31	
2. \$15.61	4.	\$9.73	6.	290 m	Fun Spot	
					$ X _{for 9}^{Roman}$	numeral
Page 5 Powers and Squ	are l	Roots				
1. $2^3 = 8 = \sqrt{64}$	5.	$8^6 = 262\ 144 = 2^{18}$	9.	$\sqrt{121} = 11 = 3^2 + 2$	12. $\sqrt{26} = 5.1 =$	$= 1^2 + 2^2 + 0.1$
2. $7^4 = 2401 = \sqrt{576480}$	1 6.	$3.4^2 = 11.56 = \sqrt{133.6}$	10	$\sqrt{1849} = 43 = 2^6 - 21$	13. $\sqrt{132} = 11.5$	$5 = 2.257^3$
3. $5^1 = 5 = \sqrt{25}$		$(-2)^3 = -8 = (2^3) - 4^2$			14. $\sqrt{94.09} = 9$	$.7 = 2^3 + 1.7$
4. $6^0 = 1 = 12^0$	8.	$(0.2)^4 = 0.0016$			Problem Solvi	ng
		$=4^2 \div 10000$			Basket 3 kg Each apple 176	
					Lacit apple 170	6
Page 6 Estimation	_	10	0	¢1F 000	Des 1.1 and Calm	•
1. 40	5.			\$15 000	Problem Solv	0
2. 10		1		• \$30 each	720 numbers p	DOSSIDIE
3. 4	7.			\$600		
4. 1	8.	20	12	. \$2000		
Page 7 Decimals	_					
1. 14.78		72.41		3.57	13. 8	
2. 0.215	6.	18.72		34.398	14. \$214.16	
3. 15.87		4.51		\$8.20	Problem Solvi	ng
4. 7.54	8.	81.76	12.	a) \$190.58	72 and 79	
				b) 30.3 m		
Page 8 Practical Probler		0				
1. a) 1.912 L \$26.10	3.	\$12.80	5.	Diesel \$14.86 Maintenance \$107.30	6. One 5 kg b 2 kg bags.	bag and two
b) 1.099 L \$15.00	4.	, ,		Total \$122.16	Total \$98.6	60
2. a) \$13.88		b) \$94.85				
b) 0.743 kg or 743 g						

118

Page 9 Addition and Sul	btraction of Integers 1					
1384	5. 274	9. ⁻ 528	13. \$84 570 (OD)			
2. -291	6. -396	10. 183	Problem Solving			
3. 55	7. -155	11. 78	26 successful			
4. ⁻ 682	8. ⁻ 440	12. −24° C				
Page 10 Addition and St						
189	52679	9. 5691	12. ⁻443 m			
2. −1532	6. ⁻ 4001	10. 2977	13. 145 m			
3. −2399	7. [−] 1358	11. 2750 years	Problem Solving			
4. 2388	8. 5682	12. −514 m	50, 20, 10, 10, 10, 10, 10			
			and 20, 20, 20, 20, 20, 10,			
Page 11 Multiplication	of Integers		10			
1. -715	5. −495 018	9. 178 186	13. -\$475 000 000 000			
2. ⁻6858	6. 58 824	10. 23 797 800	Problem Solving			
3. 39 264	7. [−] 182 988	11. ⁻\$2430 or \$2430 OD	15 cubes and 26.7% (1 dp)			
4. -71 577	8. -133 584	12. -37 380				
Page 12 Division of Int	egers					
1. –21	5. 46	9. -3	13. 25 weeks			
2. 7	6. ⁻ 17	10. ⁻ 2	14. \$180			
3. -90	7. ⁻ 19	11. \$465 000	Problem Solving			
4. 47	8. 6	12. 183 weeks				
Page 13 Number Review	v 1					
1. 2.04 x 10 ¹¹	10. 1.6 cm ² (2 sf)	19. 60	27. 18			
2. 6.07 x 10 ⁻¹²	11. 5060	20. ⁻ 2	28. -30			
3. 3.02401 x 10 ³	12. 8100	21. a) \$1121.88	29. a) \$109.45			
4. \$1.325 x 10 ¹⁰	13. 5.6	b) \$1283.56	b) \$9.95			
5. 0.000 47	14. 30 m (2 sf)	22. ⁻ 66				
6. 3 510 000 000	15. 1024	23. ⁻ 384				
7. 100 m ² (2 sf)	16. 9.7 (1 dp)	24. 162				
8. 10 m ³ (2 sf)	17. 30 m	25. -980				
9. 6.5 (2 sf)	18. 200 m	26. ⁻ 2				
Page 14 Fractions (Addi	Page 14 Fractions (Adding and Subtracting)					
1. $1\frac{3}{35}$	5. $1\frac{41}{60}$	9. $1\frac{1}{9}$	13. 1200 km			
		-	14. $\frac{1}{8}$			
2. $\frac{10}{33}$	6. $1\frac{14}{39}$	10. $\frac{11}{24}$	Problem Solving			
3. $\frac{50}{63}$	7. $\frac{29}{60}$	11. $\frac{1}{8}$	19 kg			
4. $\frac{13}{48}$	8. $\frac{127}{200}$	12. $\frac{4}{7}$				

Answers – Number

Page 15 Fractions (Multiplication and Division)

1. $\frac{6}{35}$ 2. $2\frac{2}{15}$ 3. $\frac{8}{33}$ 4. $\frac{4}{15}$	5. $\frac{10}{77}$ 6. $2\frac{1}{16}$ 7. $\frac{7}{55}$ 8. $2\frac{10}{21}$	9. $\frac{52}{75}$ 10. Yes, $\frac{1}{20}$ ha left over 11. $\frac{3}{20}$ each 12. $\frac{12}{35}$ in orchard	13. $\frac{3}{6}$ or $\frac{1}{2}$ Problem Solving $\frac{1}{4} + \frac{1}{3}$ and $\frac{1}{2} + \frac{1}{12}$
 Page 16 Fractions to Dec 1. 0.04 2. 0.625 3. 0.167 (3 dp) 4. 0.444 (3 dp) 	cimals 5. 0.15625 6. $\frac{17}{100}$ 7. $\frac{6}{125}$ 8. $1\frac{1}{4}$	9. $\frac{33}{40}$ 10. $\frac{1}{250}$ 11. 0.571 (3 dp) 12. $\frac{3}{8}$, bigger by 0.025	13. $\frac{17}{40}$ Problem Solving Assuming she ate 5 chocolates on Friday there are 129 chocolates in the box.
Page 17 Mixed Numeral 1. $\frac{17}{7}$ 2. $\frac{27}{5}$ 3. $\frac{32}{9}$ 4. $\frac{83}{10}$ 5. $\frac{63}{8}$	6. $3\frac{9}{10}$ 7. $8\frac{4}{11}$ 8. $7\frac{11}{13}$ 9. $4\frac{11}{19}$ 10. $13\frac{7}{9}$	11. $4\frac{7}{24}$ 12. $2\frac{5}{36}$ 13. $\frac{29}{30}$ 14. $1\frac{1}{4}$ 15. 10	16. $1\frac{2}{7}$ 17. $\frac{93}{175}$ 18. 22 sweets 19. $7\frac{1}{2}$ poles 20. $4\frac{4}{5}$ m
 Page 18 Ratios 1. 3:5 2. 4:1 3. 20:17 4. 29:65 	 27:8 \$40:\$60 70 cm: 50 cm 2.1 kg: 3.5 kg 	 9. 320 : 704 10. \$60 : \$96 11. 2.25 kg of meat 12. \$10.50 : \$24.50 	13. 5 : 6 : 4 14. 12 km : 15 km : 9 km Problem Solving A
Page 19 Applications of 1. $\frac{1}{15}$ 2. $\frac{5}{6}$ 3. 12	Fractions 4. 50 5. $\frac{12}{17}$ 6. $\frac{3}{20}$	 9 3³/₈ times as long \$450 000 	10. 185 males

120

Page 20 Quantities as a P	ercentage		
1. 35%	6. 82.5%	10. b) 22.4%	12. 10.4% (1 dp)
2. 46.6%	7. 6.1%	c) 23.5%	13. 18%
3. 82.1%	8. 8.2%	11. a) 65%	14. 7.7% (1 dp)
4. 54.7%	9. 38.4%	b) 43.8 % (1 dp)	15. 15%
5. 3%	10. a) 21.9%	c) 42.2% (1 dp)	
Page 21 Percentage of an	Amount		
1. \$7.50	5. \$13.20	9. 85 750	13. 252 ha
2. \$18	6. 1524	10. 91.64	14. 0.84 secs
3. \$66.50	7. 1683	11. \$570	15. 11.4 strokes
4. \$4.95	8. 7800	12. \$1275	16. \$5400
Page 22 Percentage Char	nge		
1. 15.4%	4. 21.1%	7. 13.7%	10. 31.4%
2. 12.3%	5. 22.1%	8. 12.4%	
3. 40%	6. 76.9%	9. 130.8%	
Page 23 Percentage Incre	ease and Decrease		
1. \$20	5. \$14 687.50	9. \$23.38	13. 2655 m
2. \$199.42	6. \$72.09	10. \$1735.50	14. 55.49 kg
3. \$677.10	7. \$540.55	11. \$20 250	15. 240 boys
4. \$355.71	8. \$103 490	12. \$58 860	
Page 24 Selling Price, Co	ost price and Mark-up		
1. \$31.98	5. \$4350	9. \$224.14	Communication Problem
2. \$57.51	6. \$104.35	10. \$231.76	The mark-up should
3. \$119.93	7. \$27.18	11. 39 pupils	increase to allow more
4. \$2993.90	8. \$381.36	12. \$82 034.45	profit. 25% of \$9850 is \$2462.50, yet expenses are
			\$2500 so there is a loss of \$37.50.
Dage 25 Deveentages (CS	T)		ψ57.50.
Page 25 Percentages (GS		0 4860 57	12 #10(0E(E)
1. \$9782.61	5. \$3760.87	9. \$869.57	13. \$126 956.52
2. \$121.77	6. \$1304.35	10. \$462.61	14. \$51.52
3. \$1061.22	7. \$847.83	11. \$183 952.17	Problem Solving
4. \$511.04	8. \$1782.61	12. \$3195.65	$\frac{10}{52}$, $\frac{1}{5}$, $\frac{6}{26}$, $\frac{8}{32}$

Page 26 Number Crossnumber

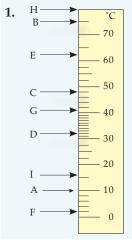
1 41		-	
1.	36.4%	11. 1	3
2.	270%		-
3.	0.49%	12. $\frac{1}{5}$	<u>23</u> 00
4.	20%	12 1	29
5	11%	13. 1	42
		1/ 1	5
6.	76%	14. 1	11
7.	0.32	15. 8	3
8.	1.35		
9.	$\frac{1}{25}$	16. 4	$\frac{1}{60}$
	3	17. \$	87.50
10.	$\frac{3}{8}$	18. 2	:5
		19. 5	:4
		20. 6	: 11

21. \$9 : \$15	31. 30
22. \$4 : \$6 : \$14	32. \$21 304.35
23. \$4 : \$20	33. \$440.87
24. 12.9%	34. \$86.65
25. ⁻ 10.1	35. \$271.40
26. -52.576	36. \$215 050
27. 4	37. \$396.67
28. \$713.90	38. \$362.37
29. \$71.61	
30. 40.0% (1 dp)	

Measurement					
Page 29 Perimeter		-) (
1. 135.5 cm	3. 8.05 m	5. a) 1700 m	6. a) 214		
2. 28.4 m	4. 191 cm	b) 10 200 m	b) \$1741.10		
		c) 6 laps			
Page 30 Circumference					
1. 48.1 cm (1 dp)	4. 295.6 cm (1 dp)	6. a) 400 m (0 dp)	Problem Solving		
2. 24.5 m (1 dp)	5. 85.9 cm (1 dp)	b) 406 m (0 dp)	888 + 88 + 8 + 8 + 8		
3. 51.8 m (1 dp)		c) 23 laps			
Daga 21 Area					
Page 31 Area 1. 116.1 m ² (1 dp)	3. 1312 cm ²	5. 1360 cm^2	Application Problem		
1. 110.1 III^2 (1 dp) 2. 52 cm ²	 3. 1312 cm² 4. 25.7 m² (1 dp) 	6. 360 m ²	$826.5 \text{ m}^2 (1 \text{ dp})$		
2. 52 Cm	4. 25.7 m (1 up)	6. 500 III	620.5 m (1 up)		
Page 32 Area of a Circle					
1. 301.7 m ² (1 dp)	3. 8824.7 mm ² (1 dp)	5. $32.3 \text{ m}^2 (1 \text{ dp})$	Application Problem		
 2. 191.1 cm² (1 dp) 	 4. 152.4 cm² (1 dp) 	6. 296.4 cm ² (1 dp)	5 by 10 = 50		
(0. 2001 cm (1 ap)			
Page 33 Volume					
1. 28.6 m ³ (1 dp)	3. 89.9 cm ³ (1 dp)	5. 265 268.8 mm ³ (1 dp)	Application Problem		
2. 441.4 cm ³ (1 dp)	4. 11.1 m ³ (1 dp)	6. 29.7 m ³ (1 dp)	18 hours		
Desso 24 Surrísson Arres					
Page 34 Surface Area 1. 122 m ²	3. 102 m^2	5. 1680 cm^2	Problem Solving		
 1. 122 m 2. 213 cm² 	4. $60.4 \text{ m}^2 (1 \text{ dp})$	6. 7446.4 cm ²	196, when turned upside		
2. 215 Cm	4. 00.4 m (1 up)		down you get 961.		
Page 35 Metric Units					
1. 35.4	6. 13.453	11. 44 500	16. 1.386		
2. 789	7. 37 230	12. 34	17. 13.5		
3. 24.514	8. 0.872	13. 1.45	18. 21		
4. 5240	9. 35 200	14. 4 700 000	Application Problem		
5. 18 900	10. 3.435	15. 125	26.8 L/h		
Page 36 Practical Problems					
1. \$4875	2. c) 45 hours	5. a) 281.3 m ² (1 dp)	Problem Solving		
 a) 94.5 m³ (1 dp) 	 2. c) 45 hours 3. 27.8 m² (1 dp) 	b) 44 L	Andrew is 24		
b) 94 500 L	4. \$27.43	c) \$690.80	Daniel is 20		
C, /1000 L	-• ψ = ··τυ	C, 4070.00	Samuel is 16 Matt is 12		
Page 37 Timetables					
1. 10.50 am, 25 min. long	g 4. 4.05 pm	7. \$80	10. \$470		
2. 4 hours 20 minutes	5. 25 hours	8. \$255	Problem Solving		
3. 9.15 am	6. 70 min. (1 h, 10 min.)	9. \$520	Nicola \$5 Matthew \$7		

Answers – Measurement

Page 38 Graphs


-	· •					
1.	11.00 am	7.	6 to 7 pm and	12.	65 km/h	Problem Solving
2.	1 pm		8 to 9 pm.	13.	11 am to 1 pm.	11 pieces.
3.	5 pm	8.	7.15 pm ± 5 min		Speed 10 km/h	
4.	7 pm	9.	220 km	14.	26 km/h	AA
5.	4 hours	10.	1 to 6 pm. (line not as steep)	15.	Katie. Katie's average speed is 27.5 km/h.	
6.	40 km	11.	70 km			
Pa	ge 39 Time					
1.	0545	6.	5.42 pm	11.	30 km/h	16. 1805 hours
2.	1815	7.	11.56 am	12.	24.86 km/h	17. a) 2.6 h
3.	0345	8.	4.5 h	13.	14 hours 57 mins	b) 466.2 km/h
4.	2252	9.	5.2 h	14.	22 hours 40 mins	Problem Solving
5.	2.25 am	10.	2.67 h (2 dp)	15.	8 hours 55 mins	52 rectangles.
_						

Page 40 Rates of Change

1.	10 km/h	4.	She is stationary.
2.	30 km/h	5.	\$1300

3. 7 - 8 pm and 9 - 11 pm. **6.** \$1500

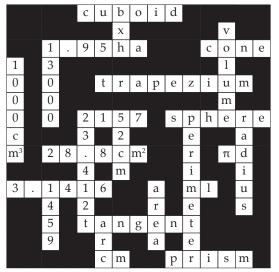
Page 41 Scales

- 2. A = 60 km/h B = 135 km/h C = 160 km/h D = 10 km/h E = 107 - 108 km/h F = 31 - 32 km/h
- A = 70 mL
 B = 18 mL
 C = 118 mL
 D = 38 mL

7. Increase. Steeper

gradient.

8. \$8800



Problem Solving

Members = 96

2	X	3	4	3
5	2	5	2	4
4	3	1	4	1
3	5	2	1	3
1	4	5	2	5

Page 42 Measurement Crossnumber

Page 43 Measurement Review

- 55.2 cm
 27.0 m (1 dp)
- **3.** 132.2 m² (1 dp)
- **4.** 2.7
- **5.** 2.53
- **6.** 0.451
- 7. 777
- 8. A = 7.5B = 16.25or 16 (0 dp)

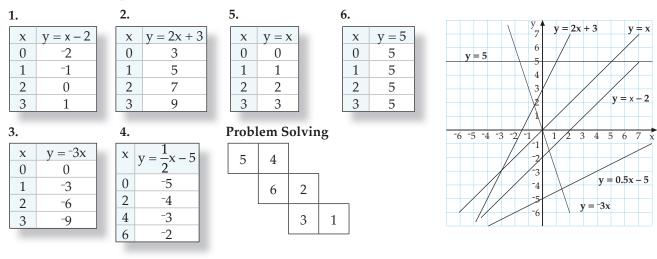
- 9. a) Vol. = $4.6 \text{ m}^3 (1 \text{ dp})$
 - b) Cap. = 4600 L (2 sf)
- **10.** a) \$18.00
 - b) \$33.50
- **11.** 5 hours 13 mins

Depart 1012 Arrive 1525

- **12.** a) 25 units/h
 - b) 24.6 units/h

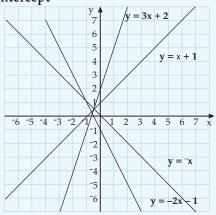
124

Algebra


<i>ingeoid</i>			
Page 45 Sequences			
1. a) and and b) Pattern 1 2 3 4 5 6 No. of Matches 3 5 7 9 11 13		 2. f) 27, 13.5, 40.5 h) 1, -0.5, 0.25 3. a) 3, 4, 5 b) 1, 3, 5 c) 4, 7, 12 	3. d) $\frac{1}{3}, \frac{2}{3}, 1$ e) 7, 4, 3 Problem Solving \$655 355.00
Page 46 Sequence Formu	lae		
1. a) Seats 1 2 3 4 Rods 3 5 7 9	1. b) Increase = 2 rods Previous = 1 rod Therefore formula is $T_n = 2n + 1$	2. a) Shape 1 2 3 4 Counters 5 9 13 17	2. b) Increase = 4 Previous = 1 Therefore formula is $T_n = 4n + 1$ Problem Solving 55
Page 47 Interpreting Graj	phs		
 20 litres The tank has been filled. 	 3. 35 litres 4. The truck is stationary. 	 8 pm to 10 pm 5 pm to 8 pm 8.75 litres/hour 	Problem Solving \$364
Page 48 Graphs of Every	day Situations		
 \$2 \$6 	 3. 10 kg 4. \$46 	 \$35.20 24 kg 	Fun Spot 8 Planets in the Solar System.
Page 49 Adding and Subl	tracting Algebraic Terms		
1. 9a	7. −4z	13. $-x^2 + 4x + 3$	18. $3r^2 - 4k$
2. $8x - 4$	8. $6k^2 + k$	14. 15k – 5s	19. $^{-3}v^{3} + 3v^{2} - 7v$
3. 4m	9. -5mn + 3	15. −8pq – 5q + 4p	20. xy – 7x + 15y
4. 13 + x	10. $3q^3 + 15p$	16. $12x^2 + 5x - 4$	Problem Solving
 5. 5 6. 2y - 4 	11. $xy + 3x - 2y$	17. 6y – 15	8
	12. 8ab – 3	5	
Page 50 Multiplying Algo 1. 6a ² b	6. $40j^{20}$	11. 9m ⁴	16. 8m ³ n ⁶
2. $12k^3$	7. $3u^7$	11. 541 12. $16a^{12}b^{16}$	17. 48ab ⁴
3. $2m^3n^2$	8. 144x ³ y ⁷	13. $m^9 n^{12}$	18. 144a ⁴
4. 24a ⁴ b ²	9. 24r ⁶	14. $64x^6y^{15}$	Fun Spot
 24a 0 10p²q⁵ 	10. $8a^3$	15. p^3q^3	90 = Degrees in a rt. Angle
		тэ. р ч	50 – Degrees in a n. Angle
Page 51 Dividing Algebra		9. $\frac{3}{m}$	Problem Solving
1. a^5	5. $\frac{4}{3m}$		0 and 10 years
2. m ³	6. $\frac{1}{4xy}$ 7. $\frac{5b^3}{9a^2}$	10. $\frac{2y}{a}$	-
3. $\frac{1}{k^2}$	$-5b^3$	11. xy	3 and 6 years 6 and 2 years
4. $\frac{2}{3b}$	7. $\overline{9a^2}$	-	0 and 2 years
3b	8. 2q	12. $\frac{2}{3b^2}$	

Level 5 - Year 10 Mathematics and Statistics - Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

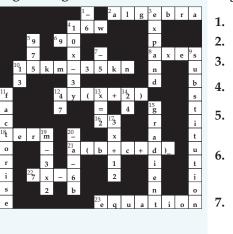
Page 52 Algebraic Substit	ution		
1. 1 2. 20 3. 25 43	 79 17 9.52 m² 	 904 .8 cm³ (1dp) 378 14.9 (1dp) 7.5 (1dp) 	Application Problem 54 287 cm ³ (0 dp)
Page 53 Expanding 1. $4x + 24$ 2. $x^2 - 5x$ 3. $3x^2 + 12x$ 4. $2x^2 - 12x$ Page 54 Factorising - Com 1. $3(x + 2)$ 2. $5(x - 4)$ 3. $a(b + c)$	5. $14x^2 - 35x$ 6. $^{-}12y - 8$ 7. $^{-}6a + 8b$ 8. $8x - 14$ mon Factors 6. $4y(2k + 3y)$ 7. $m(n + 1)$ 8. $a(c + f + 2b)$	9. $5x - 19$ 10. $x^2 + 8x + 15$ 11. $m^2 - 8m + 15$ 12. $6a^2 - 11a - 35$ 11. $6(3 + 5b)$ 12. $x(x + 2y + 3)$ 13. $6xy(2x - y)$	13. $12x^2 + 8xy - 12xz$ 14. $-2x^2 + 26x$ Problem Solving 12 cubes 16. $q^2(14q - 1)$ 17. $9(a - 4 + 3a^2)$ Application Problem
 3(3x - 4y) x(x + 4) 	 9. 3(x + 4) 10. 2y(6x - 7) 	 14. 4x(x² + 4x − 2) 15. 15y(y − 1) 	a) $x - 4$ b) $4x - 8$
Page 55 Factorising – Qua 1. $(x + 3)(x + 2)$ 2. $(k + 5)(k + 4)$ 3. $(n + 1)(n + 1) = (n + 1)^2$ 4. $(q + 3)(q + 5)$ 5. $(t - 4)(t - 2)$ Page 56 Algebra Review 1 1. 24, 27, 30 27, 0, 7 3. 51, 73, 99 42, 1, 4 5. a) b) 25	6. $(p-3)(p-8)$ 7. $(x-2)(x-2) = (x-2)^2$ 8. $(v-1)(v-6)$ 9. $(k+8)(k-2)$ 10. $(g+12)(g-2)$	11. $(x - 9)(x + 4)$ 12. $(n - 13)(n + 2)$ 13. $d(d - 8)$ 14. $u(u + 12)$ 15. $(x + 2)(x - 2)$ 10. $a^{2}b^{3}$ 11. $12m^{3}n^{2}$ 12. $12k^{2}t^{3}$ 13. $9x^{4}y^{2}$ 14. $\frac{x}{3z}$ 15. a) 2 b) 37 c) 1	16. $(x + 6)(x - 6)$ 17. $(k + 7)(k + 8)$ Problem Solving 420 days 16. a) $3x - 15$ b) $\neg x + 31$ c) $p^2 - 3p - 54$ 17. a) $2(3a + 4)$ b) $4(k - 3)$ c) $(x + 4)(x + 8)$ d) $(m - 16)(m + 2)$ e) $(a + 9)(a - 9)$
 Page 57 Solve Linear Equa 1. x = 26 2. x = 30 3. x = -73 	 ations x + a = k , cx = k 4. x = -74 5. x = 20 6. x = -5 	 7. x = ⁻⁶ 8. x = 72 9. x = 104 	Application Problem 6x + x = 42 x = 6 Marama has \$6 and Rawiri \$36.


oblem
ng
ng 40 runs 30 runs 15 runs 10 runs
roblem m < 2.9 m
ng um, l

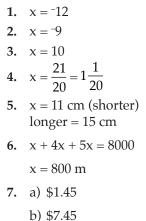

Page 65 Linear Graphs - Plotting Points

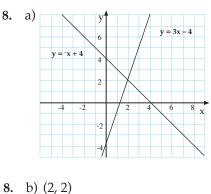
Page 66 Linear Graphs – Gradient/Intercept

1. Grad. = 3 Y int = 2 2. Grad. = 1 Y int = 1 3. Grad. = $^{-2}$ Y int = $^{-1}$ 4. Grad. = $^{-1}$ Y int = 0 5. Grad. = $\frac{1}{4}$ Y int = $^{-2}$ 6. Grad. = $\frac{1}{2}$ Y int = 3 7. Grad. = 1 Y int = 4 8. Grad. = 0 Y int = $^{-5}$


Problem Solving 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

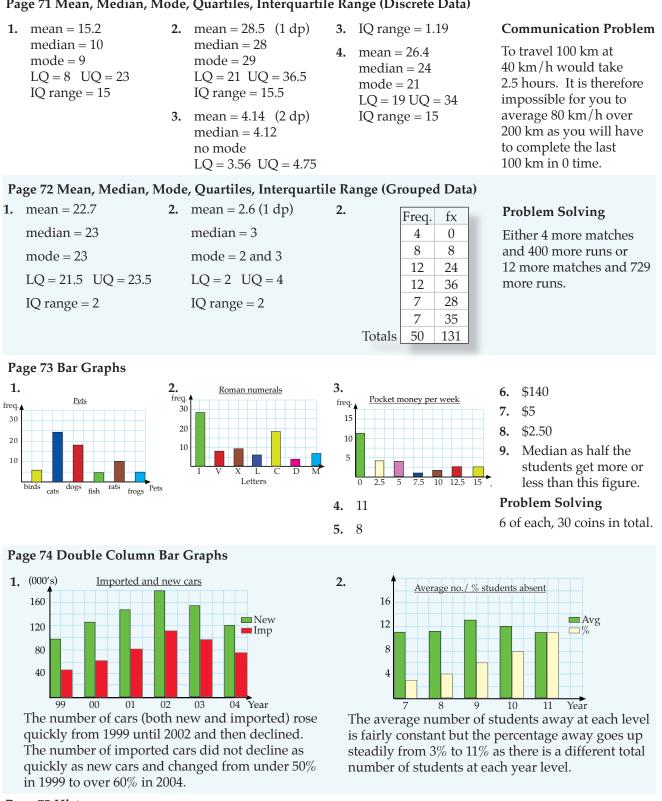
Page 67 Identifying Graphs

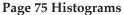

1. Grad. = 2 Y int = 1 y = 2x + 1 4. Grad. = 1 Y int = 3 y = x - 3 2. Grad. = 1 Y int = 7 y = x + 7 5. Grad. = 3 Y int = 4 y = 3x - 4 3. Grad. = $\frac{1}{2}$ Y int = -4 y = $\frac{1}{2}x - 4$ 6. Grad. = $\frac{-1}{4}$ Y int = 3 y = $\frac{-1}{4}x + 3$


7. Grad. = -1 Y int = -2 y = -x - 2
8. Grad. = 0 Y int = 4 y = 4
Problem Solving
156 chimes

Page 68 Algebra Crossmaths

Page 69 Algebra Review 2

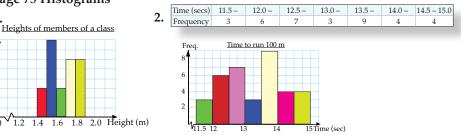




9. $M = \frac{5-N}{2}$ or $M = (5-N) \div 2$

Statistics

Page 71 Mean, Median, Mode, Quartiles, Interquartile Range (Discrete Data)

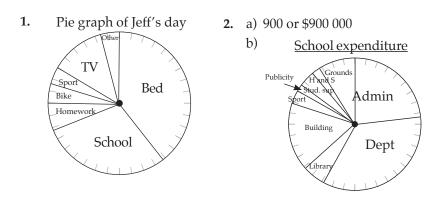


8

6

4 2

- 3. 37 people
- 0.08 0.10 seconds 4.
- 5. 0.02 to 0.04 seconds
- 3 people 6.

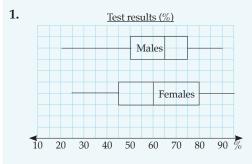

Pa	ige '	76	S	ter	n	an	ıd	L	ea	f F	Plo	ots						
1.	a)			N	Ial	es								F	em	ale	es	
								9	6	15	4	8	9	9				
				9	9	9	8	7	7	16		5	7	7	7	8	8	8
		8	7	5	4	4	3	2	2	17		0	1	1	1	3	4	
						4	3	1	0	18	1							
b) Males Females																		
		Μ	ed	ia	n	1	72	2.5	.5 Median 168									
	LQ			1	68	3.5	I	LQ				16	65					
		U	Q			1	77	7.5	lt	JÇ	2			17	71			
	c	Δ	11 1	ma			na	ra	m	oti	ore	2 2	ro	h	ia	ho	rl	h

c) All males parameters are higher than those of the females.

2. a) Test A Test B 8 4 4 2 9 7 7 6 5 5 8 7 7 6 6 4 3 7 7 7 7 8 7 7 7 8 8 8 7 7 7 8 8 8 6 7 8 4 5 6 7 8 56 67 5 3 2 1 2 7 7 2 2 6 1 3 3 7 6 2 1 b) Test A Test B Median 67 Median 56 45 57 LQ LQ UQ 76.5 66 UQ c) Test $A \ge 71$ Test $B \ge 78$

 d) The class sitting Test B got higher results. On average their results were better by about 11 marks.

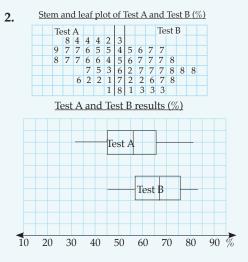
Page 77 Pie Graphs

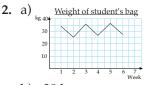

2. c) Admin + = $460\ 000$

- d) % admin = 23.3%
- e) % education = 40%
- f) % property = 27.8%

Communication Problem

Possibly as 40% is spent on students' education, but over 50% is spent on administration or property.

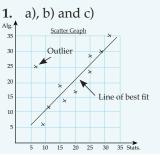

Page 78 Box and Whisker Plots


Conclusions. Female students (upper quartile and top) out-performed the males, but average and below average female students (median and lower quartile) was less than their male counterparts.

Page 79 Time Series

- **1.** Assume the rate to climb is slower than descend.
 - It took 2 hr 45 mins to reach the top.
 - It took 1 hr to descend.
 - 3 rests of 15 mins, 1 of 30 mins.
 - Distance walked up was 2.5 km.
 - Distance walked down was 4.5 km.
 - Average walking speed 2.5 km/h (1 dp)

3. Most of the class has improved by about 11%.



c) 24 kg

Problem Solving 1 006 632 960

Page 80 Scatter Graphs

Page 81 Sampling Methods

- 1. Leo, because it included a representative from each class.
- 2. Ling
- 3. The amount of work that was required. It was like conducting two elections.

Page 82 Interpreting Statistical Graphs

d) Outlier – Colin. Possible cause was that he was unwell on the day of the test or was away during some of the Statistics lessons.

4. Difficult to administer. 5. How do you get to the first student on the roll in 40 classes? If class registers are alphabetical then the survey may contain students from the same family.

- e) There appears to be a close linear relationship between the results scored in Stats. and Algebra. You would expect that a student who is good at Stats. would also be good at Algebra.
 - Mainly senior students **7.** who are interested in sport.
- 6. It could be one form level that was entering the school gate all at the same time. They are likely to know each other and make similar statements.
- f) It appears that the Stats. test was more difficult than the Algebra as 7 of the students' marks were better in Algebra. It could also mean that the students found the Stats. topic harder.

The prefects are all likely to be voting similarly to each other, as will the drama group and the Year 9 class. Instead of getting a sample Daniel would get 3 different groups.

Communication Problem Teacher will need to answer as there are lots of possible answers.

1. mean = 7.6 (1 dp)2. Median (8) is the **2.** LQ (6) 25% of people Most popular size is 3. median = 8middle shoe size sold wear size 6 shoe or size 8, no size 11s are mode = 8after they are ranked in smaller. sold, mostly sizes 8, 9 LQ = 6 UQ = 9order. and 10 are sold (48 UQ (9) 75% of people Mode (8) most out of 79). range = 6wear size 9 shoe or total sold = 79common shoe size smaller. **Communication Problem** sold – useful in this Range (6) of shoe **2.** Mean (7.6) is the sum situation. Probably a reasonable sizes sold i.e. 10 - 4. of shoe sizes divided statement as no size 11 by the number sold was sold and 79 pairs - of little use in this were sold altogether. situation. Page 83 Misleading Graphs **1.** Not consistent scale 2. Differences 3. Wider and taller. Area 4. Should be a bar graph. 10, 20, 40. exaggerated because increased not just the Implies points in vertical scale does not height. between. start at 0. **Page 84 Statistics Review** 5. 10FB to complete cro 2. Vertical axis has 10GM 4. Sales increased by 1. Tim median 26 median 26 different scale and 500 000 rolls between LQ = 13horizontal axis has 2011 and 2012 and the LQ = 14.5UO = 33UO = 38different steps for same amount between years. It looks like the 2012 to 2015. From FMTWTFMTWTF Day The 10FB company has made 2015 to 2019 the median more dramatic sales The teacher solves the increase was mark for increases than it has. crossword faster on 1 000 000 rolls. 10 20 30 Mark both 40 50 Wednesdays and takes 3. Sales of rolls of Feline Cat Food (000's) Predictions: classes is the same. The longer on Fridays. 6000 interquartile range of 2020 5 250 000 rolls. Time she takes depends 4000 10GM is greater than that on the day of the week. 2021 5 550 000 rolls. 2000 of 10FB (23.5% compared Predictions: M 11, T 8, to 20%). W 6, T 9, F 15 (mins). 12 13 14 15 16 17 18 19

Probability

Page 86 Experimental Probability

1. a) throws = 500 b) P(up) = 0.75 $\left(\frac{3}{4}\right)$ c) P(down) = 0.25 $\left(\frac{1}{4}\right)$ 2. a) P(fail) = 0.0667 (3 sf) $\left(\frac{1}{15}\right)$ b) number = 400

3. a) P(pole) = 0.109 (3 sf)
$$\left(\frac{7}{64}\right)$$

b) P(≠ false) = 0.641 (3 sf) $\left(\frac{41}{64}\right)$
c) False = 1196
4. a) 40
b) P(W) = 0.275 $\left(\frac{11}{40}\right)$
c) P(R) = 0.1 $\left(\frac{1}{10}\right)^{1}$

4. d) White = 165 e) Number = 1000 f) $P(W \cap R) = 0.375 \left(\frac{15}{40}\right)$ g) $P(W') = 0.725 \left(\frac{29}{40}\right)^{15}$ h) P(any) = 1**Problem Solving** 24 ways.

Communication Problem

6

Or looking at the outside only, you should always have half the

number hitting the peg above which will give 2 on each outside.

6

should get

2

As half go each side of a peg you

Page 87 Theoretical Probability

1. a)
$$P(odd) = 0.5 \left(\frac{1}{2}\right)$$

b) $P(\neq 4) = 0.833 (3 \text{ sf}) \left(\frac{5}{6}\right)$
c) $P(<7) = 1$
2. a) $P(J) = 0.0769 (3 \text{ sf}) \left(\frac{1}{13}\right)$
b) $P(J \cap 10) = 0.154 (3 \text{ sf}) \left(\frac{2}{13}\right)$
c) $P(\neq 2) = 0.923 (3 \text{ sf}) \left(\frac{12}{13}\right)$
d) $P(b7,r3) = 0.0769 (3 \text{ sf}) \left(\frac{1}{13}\right)$

3. a)
$$P(win) = 0.004 \left(\frac{1}{250}\right)$$

b) $P(W) = 0.02 \left(\frac{1}{50}\right)$
4. a) $P(2ndG) = 0.222 (3 \text{ sf}) \left(\frac{2}{9}\right)$
b) $P(2ndR) = 0.222 (3 \text{ sf}) \left(\frac{2}{9}\right)$
5. a) $P(first) = 0.15 \left(\frac{3}{20}\right)$
b) Number $= 0.128 (3 \text{ sf}) \left(\frac{5}{39}\right)$
6. $P(win) = 0.16 \left(\frac{4}{25}\right)$

Page 88 Predicting Probability Results

- 1. a) $P(red) = 0.125 \left(\frac{1}{8}\right)$ b) Number = 25 c) Number = 87.5 (87 or 88) 2. a) $P(2 \ge 6s) = 0.0278 (3 \text{ sf}) \left(\frac{1}{36}\right)$ b) Number = 36
 - c) P(double) = 0.167 (3 sf) $\left(\frac{1}{6}\right)$

d) Number
$$= 6$$

2. e)
$$P(=10) = 0.0833 (3 \text{ sf}) \left(\frac{1}{12}\right)$$

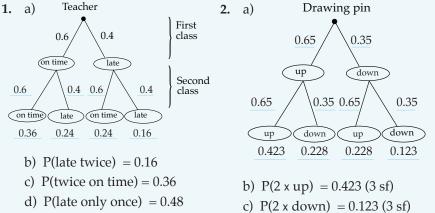
3. a) $P(\text{diff}) = 0.8 \left(\frac{4}{5}\right)$
b) Expect = 1.25 trips
c) $P(\text{diff}) = 0.6 \left(\frac{3}{5}\right)$
d) Expect = 1.67 trips (3 sf)
e) $P(\text{diff}) = 0.4 \left(\frac{2}{5}\right)$

f) Expect = 2.5 trips
g) P(diff) = 0.2
$$\left(\frac{2}{5}\right)$$

h) Expect = 5 trips
i) Total = 1+1.25+1.67+2.5+5
= 11.42 trips
chlam Solving

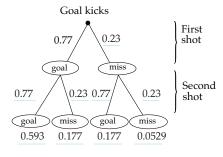
Problem Solving

Result = 0


3.

2. d) P(1 x up) = 0.455 (3 sf)
e) P(5 x up) = 0.116 (3 sf)

Problem Solving


Any pair which sum to 3.54 m.

Page 89 Tree Diagrams

Page 90 Probability Review

- 1. a) 90 mice.
- b) $P(W) = 0.411 (3 \text{ sf}) \left(\frac{37}{90}\right)$ c) $P(\neq W) = 0.589 (3 \text{ sf}) \left(\frac{53}{90}\right)$ 2. a) $P(R) = 0.25 \left(\frac{1}{4}\right)$ b) $P(YorW) = 0.417 \left(\frac{5}{12}\right)$ c) $P(\neq B) = 0.833 \left(\frac{5}{6}\right)$ 3. a)

3. b) $P(2 \times over) = 0.593 (3 \text{ sf})$

c) $P(1 \times over) = 0.354 (3 \text{ sf})$

- d) $P(3 \times miss) = 0.0122 (3 \text{ sf})$
- e) Yes he should as the probability of being on his usual form and missing 3 in a row is 0.0122 or 1.2%.

4. a)
$$P(1st) = 0.0075 \left(\frac{3}{400}\right)$$

b) $P(\neq 1st) = 0.993 \left(\frac{397}{400}\right)$

5. a) P(wing) = 0.486 (3 sf)

- b) P(shoot) = 0.326 (3 sf)
- c) Place the best defender to mark the wing attack.Your centre can be ready to intercept passes to the wing attack.

6
(1, 6)
(2, 6)
(3, 6)
(4, 6)
(5, 6)
(6, 6)
)

Probability
$$=\frac{15}{36}=0.417$$
 (3 sf)

Answers – Geometry

Geometry

Page 92 Angle Properties

1. $a = 49^{\circ}$ Adjacent angles on a straight line add to 180° .

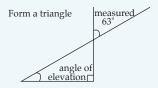
> $b = 131^{\circ}$ Adjacent angles on a straight line add to 180° .

2. $c = 64^{\circ}$ Angle sum of a $\Delta = 180^{\circ}$ (base angles of an isos. Δ are =)

> $d = 116^{\circ}$ Adjacent angles on a straight line add to 180° .

3. $e = 60^{\circ}$ Angles in an equilateral Δ are equal. $f = 60^{\circ}$ Vertically opposite angles are equal.

- 4. $g = 41^{\circ}$ Angle sum of a $\Delta = 180^{\circ}$. $h = 90^{\circ}$ Angle in a rectangle.
- 5. $i = 38^{\circ}$ Base angles of an isos Δ are =.
 - $j = 104^{\circ}$ Angle sum of a $\Delta = 180^{\circ}$. $k = 76^{\circ}$ Adjacent


angles on a straight line add to 180°.

- 6. $p = 51^{\circ}$ Angle sum of a $\Delta = 180^{\circ}$. $q = 69^{\circ}$ Angle sum of a $\Delta = 180^{\circ}$.
- 7. 12x = 360° Angle sum at a point is 360°. x = 30°

8. $y = 38^{\circ}$ Adjacent angles on a straight line add to 180° .

> $z = 71^{\circ}$ Base angles of an isosceles triangle are equal and angle sum of a triangle equals 180°.

Communication Problem

Angle of elevation $+ 90^{\circ}$ $+ 63^{\circ} = 180^{\circ}$ Angle of elevation $= 27^{\circ}$

Page 93 Angle Properties of Parallel Lines

- a = 26° Co-interior angles between parallel lines add to 180°.
 b = 154° Corresponding angles between parallel lines are equal.
- c = 131° Alternate angles between parallel lines are equal.
 d = 49° Co-interior angles between

parallel lines add to 180°.

3. $e = 54^{\circ}$ Angle sum of $a \Delta = 180^{\circ}$. $f = 54^{\circ}$ Alternate angles between parallel lines are equal. $g = 65^{\circ}$ Corresponding angles between parallel lines are equal.

- 4. $h = 34^{\circ}$ Co-interior angles between parallel lines add to 180° . $j = 34^{\circ}$ Alternate angles between parallel lines are equal or Angle sum of $a \Delta = 180^{\circ}$. $k = 47^{\circ}$ Co-interior angles between parallel lines add to 180° .
- m = 128° Vertically opposite angles are equal.
 n = 52° Co-interior angles between paral

angles between parallel lines add to 180° . $p = 128^{\circ}$

Corresponding angles between parallel lines are equal.

6. $r = 126^{\circ}$ Angle sum of a $\Delta = 180^{\circ}$ and vertically opposite angles are equal. $s = 21^{\circ}$ Alternate angles between parallel lines are equal. $t = 33^{\circ}$ Angle sum of a

 $\Delta = 180^{\circ}$. $u = 99^{\circ}$ Angle sum of a $\Delta = 180^{\circ}$.

- 7. w = 83° Corresponding angles between parallel lines are equal. v = 129° Co-interior
 - angles between parallel lines add to 180°.

Application Problem

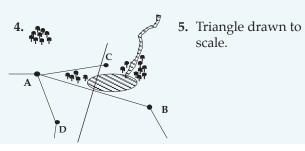
- $a = 60^{\circ}$
- $b = 70^{\circ}$
- $c = 130^{\circ}$

Page 94 Angle Properties of Polygons

1.	$a = 60^{\circ}$	4.	$k = 51.4^{\circ} (1 \text{ dp})$	Communication Problem
	$b = 120^{\circ}$		$n = 64.3^{\circ} (1 dp)$	Interior angle of a
	$c = 60^{\circ}$		$14m = 360^{\circ}$	hexagon is 120° and so
2.	$d = 45^{\circ}$		$m = 25.7^{\circ} (1 dp)$	three of them equal 360°.
	e = 135°	_	-	The interior angle of a
	$f = 90^{\circ}$	5.	Sides = 12	pentagon is 108° and no
3.	$g = 60^{\circ}$	6.	Sides $= 8$	multiple of 108° equals
	$h = 120^{\circ}$	7.	$d = 40^{\circ}$	360°.
	$i = 120^{\circ}$			
	$j = 240^{\circ}$			

= b

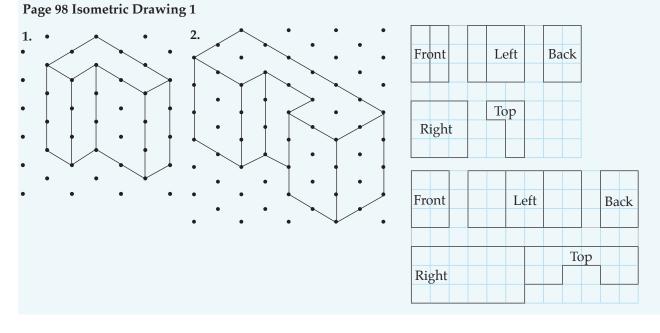
Page 95 Symmetry and Angle Properties of Polygons


1.	a = 200°	2.	$g = 40^{\circ}$
	$b = 90^{\circ}$		$h=140^{\circ}$
	$c = 35^{\circ}$		$j = 105^{\circ}$
	$d = 325^{\circ}$		$k = 75^{\circ}$
	e = 115 mm		n = 1.9 m
	f = 83 mm		p = 1.7 m
			q = 5.5 m

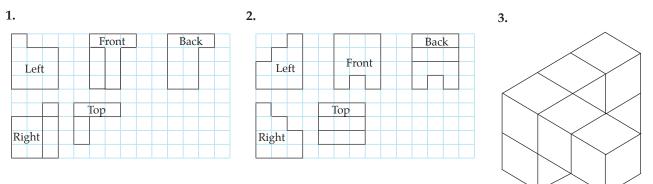
3.	Hex	agon	=4 tr	riangle	s 5.	$60^\circ = b$
	Hex	agon	=4 x	180°		$90^{\circ} = a$
4	Hex	agon	= 720)°		$120^\circ = d$
4.	Name	Sides	No Δs	Angles	Total	$150^{\circ} = c$

Name	Sides	No ∆s	Angles	Total	15
Tri.	3	1	1 x 180	180	
Quad.	4	2	2 x 180	360	
Pent.	5	3	3 x 180	540	
Hex.	6	4	4 x 180	720	
Oct.	8	6	6 x 180	1080	
Deca.	10	8	8 x 180	1440	

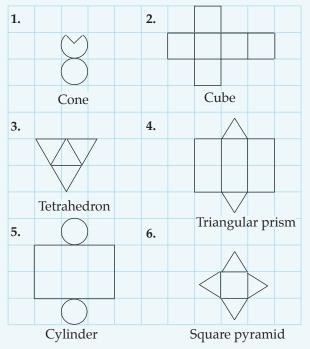
Page 96 Constructions


- **1.** Passes through 28 ± 1 **2.** Passes through 23 ± 1
- 3. Angle bisector passes through the letter C of angle ACB.

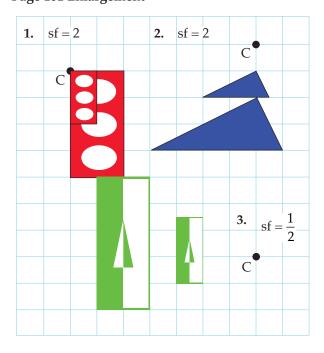
Page 97 Circle Geometry


	$A = 38^{\circ}$ $B = 104^{\circ}$ $C = 43^{\circ}$ $D = 43^{\circ}$ $E = 96^{\circ}$ $F = 42^{\circ}$ $G = 42^{\circ}$ $H = 90^{\circ}$	4.	M = 32° Angles from the same arc are equal \bigotimes . N = 39° Angles from the same arc are equal \bigotimes . P = 109° Angle sum of a ∆ is 180°.	5. $Q = 90^{\circ}$ An angle in a semi circle \bigcirc is 90°. $R = 28^{\circ}$ The angle at the centre is twice the angle at the circumference \textcircled{O} . $T = 28^{\circ}$ Base angles of an isos. \land are equal.	Fun Spot WEONO1 We owe no one. 4U2ENV For you to envy. IDA14U I am the one for you.
--	--	----	---	---	---

- **3.** $I = 35^{\circ}$ $J = 55^{\circ}$ $K = 55^{\circ}$ $L = 55^{\circ}$


Answers – Geometry

Page 99 Isometric Drawing 2



Application Problem

Page 100 Polyhedra and Nets

Page 101 Enlargement

 $z = 35^{\circ}$

5. a = 3.75 m

b = 1.6 m

c = 1.875 m

Application Problem

Detail	Plan	House
Width of lounge	45 mm	4.5 m
Length of the kitchen	36 mm	3.6 m
Height of the door	19.5 mm	1.95 m
Area of the house	18 000 mm ²	180 m ²

11. Axes = 0

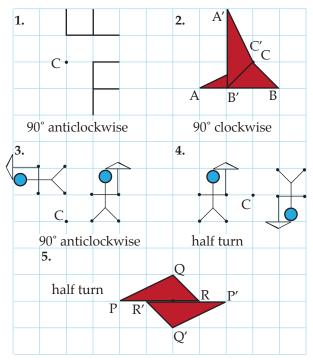
12. Axes = 1

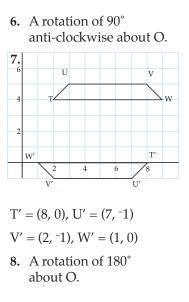
is greater.

Order = 2

Total = 2

Order = 1


Total = 2


Problem Solving

Cylinder because there are more ways it will fit

- total order of symmetry

Page 102 Rotation

7. Axes = 4

Order = 4

Total = 8

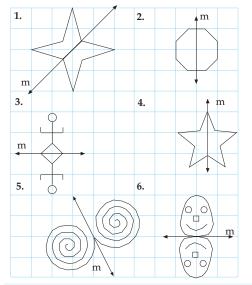
Order = 10

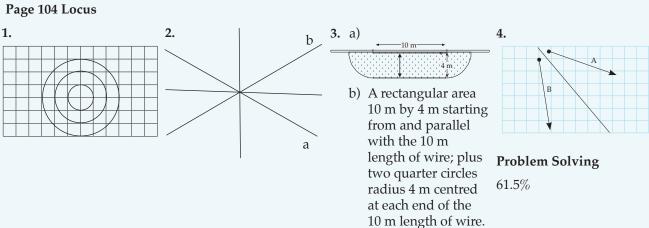
Total = 20

Order = 1

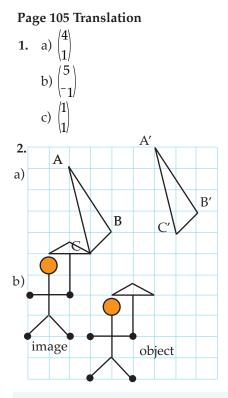
Total = 1

Order = 4


Total = 4


8. Axes = 10

9. Axes = 0


10. Axes = 0

Page 103 Reflection and Symmetry

Level 5 - Year 10 Mathematics and Statistics - Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

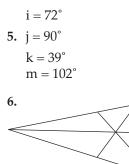
Page 106 Properties of Transformations

- **1.** Translation back 5 down 1.
- **2.** Rotation of half a turn about (4, 2.5).
- **3.** Reflection in the mirror line x = 5.
- 4. All the points on the line x = 3.
- 5. Just the point R.

	Rotation	Reflection	Translation	Enlargement	
lo cizo					

Angle size	~	~	~	~
Area	~	v	~	X
Line length	~	v	~	X
Sense – the				
direction you	~	X	~	~
go around it.				

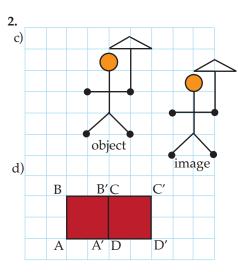
Page 107 Geometry Review


- a = 26° Adjacent angles on a straight line add to 180°.
 b = 90° Right angle
 - it angle **5.** j
- 2. $c = 64^{\circ}$ Angle sum of a Δ is 180°. $d = 154^{\circ}$ Adjacent

marked.

angles on a straight line add to 180°.

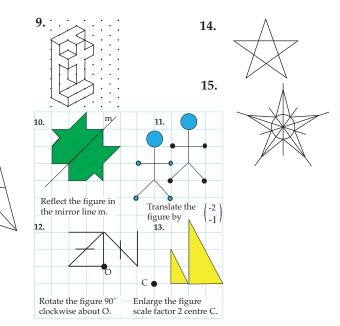
3. e = 116° Co-interior angles between parallel lines add to 180°.


 $f = 64^{\circ}$ Corresponding angles between parallel lines are equal.

4. $g = 72^{\circ}$

 $h = 108^{\circ}$

Communication Problem


A translation of 1 unit across and 2 units down. i.e. $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Problem Solving

36 km/h (2 sf)

Fun Spot

12	13	1	8
6	3	15	10
7	2	14	11
9	16	4	5

Answers – Trigonometry

Trigonometry			
Page 109 Pythagoras 1			
1. $a = 13 \text{ cm}$	4. $d = 12.5 \text{ cm}$	7. $g = 8.3 \text{ cm} (1 \text{ dp})$	10. 3.7 km (1 dp)
2. $b = 30 \text{ mm}$	5. $e = 16.4 \text{ cm} (1 \text{ dp})$	8. diagonal = 4.2 m	11. 110 + 50 + 121
3. $c = 25 \text{ mm}$	6. $f = 10.1 \text{ cm} (1 \text{ dp})$	9. 11.5 km (1 dp)	= 281 m (0 dp)
Page 110 Pythagoras 2			
1. $a = 6 \text{ cm}$	4. $d = 9.9 \text{ cm} (1 \text{ dp})$	7. $g = 9.7 \text{ m} (1 \text{ dp})$	10. Sides 3.54 m (2 dp)
2. $b = 5 \text{ cm}$	5. $e = 7.2 \text{ cm} (1 \text{ dp})$	8. 15.9 m (1 dp)	
3. $c = 5.1 \text{ cm} (1 \text{ dp})$	6. f = 15.8 m (1 dp)	 9. 2 x around = 600 m 6 x diag. = 671 m (0 dp Diagonal by 71 m)
Page 111 Sine and Cosine			
1. $a = 8.62 \text{ m}$	4. $d = 12.1 \text{ m}$	7. $g = 4.85 m$	
2. $b = 16.3$ cm	5. $e = 12.1 m$	Application Problem	
3. $c = 4.97 m$	6. $f = 118 \text{ mm}$	Height 2.41 m (2 dp)	
Page 112 Tangent			
1. $a = 5.00 \text{ cm}$	3. $c = 37.2 \text{ cm}$	5. $e = 9.56 m$	7. $g = 92.2 \text{ m}$
2. $b = 5.65 \text{ cm}$	4. $d = 126 \text{ mm}$	6. $f = 32.2 \text{ m}$	Application Problem Height = 5.60 m (2 dp)
Page 113 Mixed Problems	S		
1. a = 36.3 m (1 dp)	3. $c = 7.3 \text{ m} (1 \text{ dp})$	5. $e = 20.5 m (1 dp)$	7. $g = 8.3 \text{ m} (1 \text{ dp})$
2. b = 5.47 cm (1 dp)	4. d = 162.4 mm (1 dp)	6. $f = 6.5 \text{ cm} (1 \text{ dp})$	Application Problem x = 18.7 m (1 dp)
Page 114 Angles			
1. $A = 28.2 \circ (1 \text{ dp})$	3. $C = 26.0^{\circ} (1 \text{ dp})$	-	7. $G = 35.0^{\circ} (1 \text{ dp})$
2. $B = 57.8^{\circ} (1 \text{ dp})$	4. $D = 37.3^{\circ} (1 \text{ dp})$	6. $F = 62.3^{\circ} (1 \text{ dp})$	Application Problem Angle = 66.4° (1 dp)
Page 115 Applications			
1. $h = 1.13 \text{ m}$	3. $d = 2.88 \text{ m}$	5. dist. = 19.3 m	6. $h = 13.8 \text{ m}$
2. $h = 3.04 \text{ m}$	4. $b = 20.7 \text{ m}$	angle = 62.1°	
	s = 14.0 m		
Page 116 Trigonometry Review			
1. $p = 13.2 \text{ m} (1 \text{ dp})$	4. $t = 83.5 \text{ mm} (3 \text{ sf})$	8. y = 0.362 m (3 sf)	11. h = 301 m (3 sf)
2. $q = 80.5 \text{ cm} (1 \text{ dp})$	5. $u = 11.7 \text{ m} (1 \text{ dp})$	9. $A = 40.3^{\circ} (1 \text{ dp})$	12. a) $h = 29.9 \text{ m} (3 \text{ sf})$
3. $r = 3.19 m (3 sf)$	6. $v = 45.4 \text{ cm} (1 \text{ dp})$	10. a) h = 55.1 m (1 dp)	b) lgth = 150 m (3 sf)
s = 1.81 m (3 sf)	7. $x = 1.26 \text{ m} (3 \text{ sf})$	b) a = 84.6° (1 dp)	