Answers		Page 5 cont	
Page	e 4	35.	240°
1.	1.070 (3 dp)	36.	270°
2.	0.785 (3 dp)	37.	540°
3.	3.547 (3 dp)	38.	210°
4.	6.283 (3 dp)	39.	80°
5.	0.838 (3 dp)	40.	162°
6.	4.294 (3 dp)	Pag	ge 6
7.	10.036 (3 dp)	41.	The speed of the car in m/s
8.	18.047 (3 dp)		Speed = $90\ 000\ /\ 3600$
0	<u>π</u>		= 25 m/s
9.	2		Circumference of wheel
10.	π		$C = 2\pi \times 0.37$
11.	$\frac{\pi}{6}$		= 2.3248 m
12.	$\frac{\pi}{2}$		Revolutions per second
	12		Revs = 25 / 2.3248
Page	e 5		= 10.754 fevs / s
	π		Time $= 2.75$ 2600
13.	$\frac{\pi}{4}$		-13500
14	<u>7π</u>		Revolutions to Wellington
11,	6		$Revs = 13500 \times 10754$
15.	$\frac{\pi}{3}$		= 145200 (4 sf)
	5		The weak spot will touch the
16.	$\frac{5\pi}{12}$		road about 145 200 times (4 sf).
	2	42.	We need the angle in radians to
17.	$\frac{3\pi}{10}$		calculate the arc length. Angle
	10		cut out
18.	<u>3π</u>		Angle out $= 0.890$
	4		Angle A = $2\pi - 0.890$ = 5.202 radiana
19	26π		= 5.595 factors
17.	9		$Arc = 5.393 \times 0.652$
20	14π		-35163 m (5 sf)
20.	3		Perimeter + wedge
21.	114.6° (1 dp)		Dist. = $3.5163 + 2 \times 0.652$
22.	31.0° (1 dp)		= 4.8203 m (5 sf)
23.	120.0° (1 dp)		Area of gold
24.	-71.0° (1 dp)		Area = 4.8203×0.845
25.	235.0° (1 dp)		$= 4.0731 \text{ m}^2 (5 \text{ sf})$
26.	345.0° (1 dp)		Cost of foil
27.	470.0° (1 dp)		Cost = \$305.49 (2 dp)
28.	896.7° (1 dp)	Pag	- 7e 8
29.	180°	43.	5.97 m (3 sf)
30.	45°	44.	1.235 radians (3 dp)
31.	90°		70.8° (1 dp)
32.	60°	Pag	ge 9
33.	30°	45.	a = 6.3 m (2 sf)
34.	225°	46.	1.47 radians or 84.0° (3 sf)
			· · ·

Page 9 cont			
47.	Arc = 5.52 m (3 sf) Sector = 6.84 m ² (3 sf)		
48.	Arc = 153 cm (3 sf) Sector = 1940 cm ² (3 sf)		
49.	Perimeter = 545 m (3 sf)		
50.	r = 9.80 m (2 sf)		
51.	72 000 mm ² (3 sf)		
52.	Arc = 3.29 m (3 sf)		
	Area = $2.39 \text{ m}^2(3 \text{ sf})$		
Page	10		
53.	a) 2.71 radians		
	b) $0.61 \text{ m}^2 (2 \text{ sf})$		
54.	Angle = 4.5 radians		
	or $= 256.9^{\circ}$		
	Area = $6800 \text{ mm}^2 (2 \text{ sf})$		
55.	a) $1300 \text{ m}^2 (2 \text{ sf})$		
	b) 152 m		
	c) 105 m		
Page	11		
56.	Let $r = radius hat$,		
	R = radius card.		
	$\theta R = 2\pi r$		
	$32\theta = 2\pi 11$		
	$\theta = \frac{11}{16}\pi (2.16)$		
	cut out $=\frac{21}{16}\pi$ (4.12)		
	Area = 1100 cm^2		
57.	Angle of one sector.		
	Angle = $0.314 \ 16 \ rad.$		
	Area in $= 0.5\pi(143^2 - 132^2)$		
	$= 475 \text{ mm}^2 (0 \text{ dp})$		
	$-752 \text{ mm}^2 (0 \text{ dn})$		
	$= 752 \text{ mm}^2 (0 \text{ up})$		
	$-2(475 \pm 752)$		
	$= 2454 \text{ mm}^2$		
	Ratio win to total		
	$= 305\ 800:2454$		
	= 125 : 1		
	Therefore given odds of		
	\$100 : \$2 or 50 : 1 are not		
	good particularly as you may		
	miss the entire board.		
Page 14			
58.	$Area = 32 m^2 (2 sf)$		

58.	Area = $32 \text{ m}^2 (2 \text{ st})$
59.	Area = $100 \text{ cm}^2 (2 \text{ sf})$
60.	Area = $75.9 \text{ m}^2 (1 \text{ dp})$
61.	Area = $427 \text{ cm}^2 (3 \text{ sf})$
62.	Area = $26.8 \text{ m}^2 (3 \text{ sf})$

48

IAS 2.4 – Trigonometric Relationships

Page 14 cont... 63. Area = $38\ 000\ m^2\ (3\ sf)$ 76. $Area = 38\ 000\ m^2\ (3\ sf)$ 64. Area = $2.1 \text{ m}^2 (2 \text{ sf})$ 65. Length = 27.5 km (3 sf)**66**. Page 15 67. a) sector $= 57.1 \text{ m}^2$ (3 sf) b) trian. $= 42.8 \text{ m}^2$ (3 sf) seg. $= 14.3 \text{ m}^2$ (3 sf) c) radius = 17.5 cm 68. (3 sf) area whole = 235.06 cm^2 **69**. segment $= 21.35 \text{ cm}^2$ area part $= 214 \text{ cm}^2$ (3 sf) 70. AOB = 0.667 radians $AOB = 38.2^{\circ}$ 71. Angle = 1.4765 radians Area = 89.3 m^2 (1 dp) Pavers = 4912including 10% extra. $Cost = $46\ 660.00$ Answers will vary slightly depending on rounding and what angle is used to find the area. 72. Sector radius 64 mm and chord - 32 mm. Let angle = A $\sin 0.5A = \frac{16}{64}$ A = 0.5054 rad. (4 sf) Area 1 = $0.5 \times 64^2 \times 0.5054$ $= 1035 \text{ mm}^2$ (4 sf) All area = 4140 mm^2 (3 sf) Page 16 73. Area triangle Area = $0.5 \times 8.45 \times 7.45 \sin G$ $\sin G = 0.1979$ $G = 11.4^{\circ} (0.1990 \text{ rad.})$ $G = 180 - 11.4^{\circ}$ or $= 168.6^{\circ}$ (2.9426 rad.) 74. Angle = 1.1519 rad. Two identical segments Area = $0.5 \times r^2 (A - \sin A)$ = 1.259Tot. area = 2.52 cm^2 (3 sf) 75. Missing segment Angle = 1.3606 Area = $0.5 \times r^2(A - \sin A)$ $= 735.4 \text{ mm}^2$ **96.** $X = 34.6^{\circ}, Y = 37.4^{\circ},$ Circle $= 12\ 076\ mm^2$ y = 3.64 m (2 dp)Shape = Circle -2 seg.

 $= 10\ 600\ \mathrm{mm^2}\ (3\ \mathrm{sf})$

Page 16 cont... Circle $=\pi r^2$ Octagon Angle = 45° (0.7854 rad.) 1 area = $0.5 r^2 \sin 0.7854$ 8 areas = $4 r^2 \sin 0.7854$ $4r^2\sin 0.7854$ Ratio = πr^2 = 0.9003Percent = 90.0% Page 18 77. x = 522 mm**78.** G to A = 173 km (3 sf) Page 19 **79.** 6.8 cm (1 dp) **80.** 14.8 cm (1 dp) **81.** 10.2 cm (1 dp) **82.** 3.6 km (1 dp) 83. x = 10.8 km (1 dp)y = 11.5 km (1 dp)Total = 26.8 km (1 dp)**84.** a) 6.6 m (1 dp) b) 6.0 m (1 dp) c) 30 sheet widths d) 189 metres. Cost \$3200 Page 20 **85.** 33.6° (1 dp) 86. 43.9° (1 dp) **87.** 57.3° (1 dp) 88. $A = 59.2^{\circ} (1 \text{ dp})$ 89. $M = 16.0^{\circ} (1 \text{ dp})$ $N = 12.8^{\circ} (1 \text{ dp})$ **90.** $D = 65.5^{\circ} (1 \text{ dp})$ x = 3.6 km (1 dp)**91.** $X = 38.8^{\circ} (1 \text{ dp})$ $Y = 88.1^{\circ} (1 \text{ dp})$ y = 4.6 m (1 dp)Page 21 **92.** p = 19.7 m (3 sf) q = 13.3 m (3 sf)**93.** $K = 58.7^{\circ} (1 \text{ dp})$ or $K = 121.3^{\circ} (1 \text{ dp})$ **94.** $G = 69.9^{\circ} (1 \text{ dp})$ $H = 41.7^{\circ} (1 \text{ dp})$ **95.** $A = 61.1^{\circ} (1 \text{ dp})$ y = 3.66 m

11.4 m (1 dp) 99. Page 24 **100.** Guy rope is 26.4 m (1 dp) Mast is 21.2 m. 101. 121 km (3 sf) **102.** a) 7.7 km (1 dp) b) 157° 103. Blue triangle Sides = 128 mm(0 dp) and 305 mm (0 dp) Green triangle outside side = 464 mm(0 dp) Orange triangle Angle = 123° Side 409 mm (0 dp) Perim. = 413 + 464 + 409= 1286 mm (0 dp) Page 25 **104.** 76.2° (1 dp) **105.** 38.9° (1 dp) **106.** 119.8° (1 dp) **107.** $X = 48.9^{\circ} (1 \text{ dp})$ $Y = 59.1^{\circ} (1 \text{ dp})$ $Z = 72.0^{\circ} (1 \text{ dp})$ **108.** 076° **109.**a) Using the cosine rule, $A = 114^{\circ}$. Similarly $B = 46^{\circ}$ and $C = 21^{\circ}$ to the nearest degree. b) Angle ZCX is a right angle. $BCX = 69.3^{\circ}$ which gives CX = 4.67 m and XB = 12.35 mPage 26 **110.** Largest angle = 68.3° **111.** x = 10.6 cm (3 sf)**112.** y = 220 mm (3 sf) **113.** $X = 29.5^{\circ} (1 \text{ dp})$ $y = 36.1^{\circ} (1 \text{ dp})$ $Z = 114.4^{\circ} (1 \text{ dp})$ **114.** BAC = 53.1° $ABC = 36.9^{\circ}$

 $ACB = 90^{\circ}$

(2 dp)

Page 23

98.

97. 10.4 cm (1 dp)

6.7 cm (1 dp)

IAS 2.4 – Trigonometric Relationships

Page 31 Q124 cont...

```
Page 26 cont...
115. a) Angle = 107.8^{\circ} (1 dp)
      b) Area = 17900 \text{ km}^2 (3 \text{ sf})
116. a) Angle = 46.4^{\circ} (1 dp)
      b) Area = 243 \text{ m}^2 (3 \text{ sf})
Page 27
117. a) Calculate all known
          lengths (60 \text{ s} = 1 \text{ min})
              C1 = 4.1 \times 32.3 \times 60
                    = 7.945.8 \text{ m}
              C2 = 10701.0 \text{ m}
               J1 = 5.054.5 \text{ m}
                J2 = 12 823.2 m
           Clint's distance
                D = 99^{\circ}
          Using cosine rule
              SE = 14 291.6 m
               SE = 14300 \text{ m} (3 \text{ sf})
          Jenny's distance
               SL = 16\,900 \text{ m} (3 \text{ sf})
      b) Angle DSK is a right
          angle. Using cosine rule
             ESD = 47.7^{\circ}
             LSK = 30.7^{\circ}
         Therefore
             ESL = 11.6^{\circ}
         Distance apart is from
          triangle ESL
              EL = 4090 \text{ m} (3 \text{ sf})
Page 29
118. Acute angle is 7.3°
       Obtuse angle is 165.4°
       ASA so sine rule.
                       3150
                    sin165.4°
       \sin 7.3^{\circ}
      x = 1590 \text{ mm} (3 \text{ sf})
119. SSS so cosine rule
       48^2 = 43^2 + 17^2 - 2x43x17x\cos A
       Angle = 96.5^{\circ}
120. a) SAA so sine rule
             h_1 = 41.2 \text{ m}
             h_2 = 850 \sin 18.1
      b)
               = 264 \text{ m}
121. SSS so cosine rule
           1.9 km
                              2.1 km
       BtoAtoC = 42.7^{\circ}
```

Page 30

122. Angle $ATB = 23^{\circ}$ Ext. L tri. = 2 Opp. L's. Using sine rule as SAA Let BT = x30 х $\frac{x}{\sin 42^\circ} = \frac{30}{\sin 23^\circ}$ x = 51.38 m.Using Rt. L tri. BTG h = 46.6 m (3 sf)h 65° 42° 30.0 m В А 123. Δ

Let the distance from C to the mast be x and from D to the mast be y. If the height of the radio mast is h then

$$\tan 65^\circ = \frac{h}{x}$$
 and $\tan 56^\circ = \frac{h}{y}$
so $x = \frac{h}{\tan 65^\circ}$ and $y = \frac{h}{\tan 56^\circ}$
For the triangle CBD

$$x^{2} + 90^{2} = y^{2}$$
$$90^{2} = h^{2} \left(\frac{1}{\tan^{2} 56^{\circ}} - \frac{1}{\tan^{2} 65^{\circ}} \right)$$

h = 185 m (3 sf)

Page 31

124. Distance TS using cosine rule TS = 4.25 km

124. Distance SR using cosine rule SR = 3.025 kmAngle FST and RSL $FST = 24.6^{\circ}$ $RSL = 22.7^{\circ}$ This gives TSR TSR = 90 - 22.73 - 24.54 $= 42.7^{\circ}$ Using cosine rule we now find the distance home (x) x = 2.89 kmCalculate angles LRS and SRT and found to get R the angle home. R = 180 - 91.8 - 28.5 $= 59.7^{\circ}$ **125**. Angle OHW = 178.29° Adj. angles str. line. = 180° Dist. = Speed \times time $OH = 8.52 \frac{53.2}{60}$ = 7.55 kmSine rule to get angle HWO HWO = 1.09° HOW = 0.62° Angle sum Tri. $= 180^{\circ}$ Side HW = 4.30 kmusing sine rule. Time = 17.5 min soSpeed = 14.7 km/h

Page 33

126. Distance apart is 5.8 km (2 sf) 127. a) Angle between two completed legs is 137°. Distance from Christchurch is 3329 km. b) 3 hours 23 minutes c) Bearing back 187.2° 128. Area of each of 4 triangles $A_1 = 0.5 \times 23.5 \times 27.2 \times \sin 100^\circ$ $= 314.7 \text{ m}^2$ $A_2 = 0.5 \times 18.6 \times 27.2 \times \sin 78^\circ$ $= 247.4 \text{ m}^2$ $A_2 = 0.5 \times 18.6 \times 32.6 \times \sin 89^\circ$ $= 303.1 \text{ m}^2$ $A_{4} = 0.5 \times 32.6 \times 23.5 \times \sin 93^{\circ}$ $= 382.5 \text{ m}^2$ $Total = 1250 \text{ m}^2 (3 \text{ sf})$

IAS 2.4 - Trigonometric Relationships

IAS 2.4 - Trigonometric Relationships

Assessment 1 cont... Question Three First sail Angles PRQ = 39.7° Area = 21.4 m^2 New sail Increased area = 25.7 m^2 Area = $0.5 \times 7.9 \times 8.5 \times \sin PRQ$ $25.7 = 0.5 \times 7.9 \times 8.5 \times \sin PRQ$ PRQ = 49.9° , Using cosine rule PQ = 6.9 mRPQ = 69.5° and PQR = 60.6° .

Evidence for Achievement	Evidence for Merit	Evidence for Excellence			
The student has applied trigonometric relationships in solving problems. The student correctly selects and uses trigonometric relationships. They have demonstrated knowledge of trigonometric concepts and terms and communicated using appropriate	The student has applied trigonometric relationships, demonstrating relational thinking in solving problems. The student has related their findings to the context or communicated their thinking using appropriate mathematical statements.	The student has applied trigonometric relationships, demonstrating extended abstract thinking in solving problems. The student has used correct mathematical statements or communicated mathematical insight.			
representations. Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Some evidence of correct units is required.	Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Correct units are required.	Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Correct units are required.			
Question One Correct approach including triangle drawn. Some calculations correct.	All angles correct and at least one side correctly calculated. Answer related to context.	Method correctly communicated and answer completely correct within limits.			
Question Two Diagram drawn correctly and all angles calculated.	All angles correct and at least one distance correctly calculated. Answer in context.	Distance and area correct and method correctly communicated.			
Question Three Initial vertex angle and area correctly calculated.	Diagram drawn and the problem approached correctly. The new area and new vertex angle calculated.	Method appropriate for the problem and communicated. The full answer is completely correct.			
Sufficiency. Overall students require:					
Two or more Achievement questions or better for overall Achievement.					

Two or more Merit questions or better for overall Merit.

Two or more Excellence questions or better for overall Excellence.

IAS 2.4 - Trigonometric Relationships

Pages 40 – 42 Practice Internal Assessment 2 – Trigonometric **Relationships 2.4** Middle course $BD^2 = 67.5^2 + 183^2 - 2(67.5)(183)\cos 88^\circ$ BD = 192.8 mCourse = 67.5 + 183 + 193= 443 m (3 sf) Junior course Using triangle ABD. Let angle ABD = x. $\frac{\sin x}{22} = \frac{\sin x}{192.8}$ $x = 71.5^{\circ}$ Using triangle CBD. Angle BCD using cosine rule $BCD = 101.9^{\circ}$ Let angle CBD = y. $\frac{\sin y}{144} = \frac{\sin 101.9}{192.8}$

 $x = 47.0^{\circ}$

Assessment 2 cont... Angle ABC = 118.5° Length of junior course AC + 169.5AC = 146.7 m (using Cosine rule) Course = 316 m(3 sf) Area enclosed is triangles ABD plus CBD. Area ABD = 0.5(67.5)(183) sin 88 $= 6172.5 \text{ m}^2$ Area $CBD = 7186.5 \text{ m}^2$ Total area = $13 400 \text{ m}^2$ (3 sf) New position of B Angle BAC = 37.7° Let AB = x and BC = y then x + y = 173 (500 - 183 - 144) $y^2 = x^2 + 146.7^2 - 2(x)(146.7) \cos 37.7$ Substitute for y and solve with Solver on calculator. x = 73.8 mAB = 73.8 m and BC = 99.2 m Line AB is extended in a straight line to 73.8 m. From there to C should be 99.2 m.

Evidence for Achievement	Evidence for Merit	Evidence for Excellence			
The student has applied trigonometric relationships in solving problems. The student correctly selects and uses trigonometric relationships. They have demonstrated knowledge of trigonometric concepts and terms and communicated using appropriate representations. Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Some evidence of correct units is required.	The student has applied trigonometric relationships, demonstrating relational thinking in solving problems. The student has related their findings to the context or communicated their thinking using appropriate mathematical statements. Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Correct units are required.	The student has applied trigonometric relationships, demonstrating extended abstract thinking in solving problems. The student has used correct mathematical statements or communicated mathematical insight. Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Correct units are required.			
<i>Course lengths</i> Correct Middle school length. Approach to Junior school correct.	Correct Middle school length and most of calculations for Junior school correct plus answer given in context.	Method correctly communicated and answer completely correct within limits of accuracy.			
<i>Area</i> <i>Approach correct and at least one</i> <i>area correctly calculated.</i>	Total area correct.	Total area correct with units and correct rounding.			
<i>New position for B</i> Angle BAC correct and the sum of the two sides is 173 m.	Angle BAC correct and the sum of the two sides is 173 m. Approach to solving for sides is correct, but side length is not solved.	Answer correct and instructions to groundsman sufficient and in context.			
Sufficiency. Overall students require: Two or more Achievement questions or better for overall Achievement.					

Two or more Merit questions or better for overall Merit.

Two or more Excellence questions or better for overall Excellence.

Pages 43 - 47 Practice Internal Assessment 3 -**Trigonometric Relationships 2.4** A Block of Land Finding angle Arc = $r\theta$ 80.2 = 460 $\theta = 1.743$ radians Area of segment $= 0.5r^2 (\theta - \sin \theta)$ $= 801.7 \text{ m}^2$ Land area = Trapezium – Segment $= (110 + 154) \div 2 \times 55 - 801.7$ $= 6460 \text{ m}^2 (3 \text{ sf})$ Area is less than the 6900 m² advised. It is $6460 \text{ m}^2 (3 \text{ sf})$ **Lighthouses and Ships**

Page 44 Assessment 3 cont... Angle CAD = 37° Angle $CAB = 62^{\circ}$ Angle $CBA = 24^{\circ}$ Angle $DBC = 48^{\circ}$ Angle $DBA = 72^{\circ}$ Angle ACB = 180 - 62 - 24= 94° Length AC AC 8 sin 24° sin 94° AC = 3.262 kmLength AD AD sin 72° sin 83° AD = 7.666 km Length CD (Dist. between ships) using cosine rule on triangle CAD. = 5.4 km (2 sf)The ships are 5.4 km (2 sf) apart.

Page 46 Assessment 3 cont... Width of a Stream

$$\tan 18^\circ = \frac{H}{x}, \tan 20^\circ = \frac{H}{y}.$$
$$\operatorname{or} x = \frac{H}{\tan 18^\circ}, y = \frac{H}{\tan 20^\circ} (1)$$
Using Puthagoras

Using Pythagoras

 $\begin{aligned} x^2 &= w^2 + 8^2 \text{ so } w^2 = x^2 - 64 \\ y^2 &= w^2 + 6^2 \text{ so } w^2 = y^2 - 36 \\ \text{Substituting x and y from above gives.} \end{aligned}$

$$w^{2} = \frac{H^{2}}{\tan^{2} 18^{\circ}} - 64 \text{ and}$$
$$w^{2} = \frac{H^{2}}{\tan^{2} 20^{\circ}} - 36$$

Equating and solving with the graphics calculator solver gives H = 3.815 m and w = 8.60 Width of the river is 8.6 m (1 dp)

Evidence for Achievement	Evidence for Merit	Evidence for Excellence			
The student has applied trigonometric relationships in solving problems. The student correctly selects and uses trigonometric relationships. They have demonstrated knowledge of trigonometric concepts and terms and communicated using appropriate representations. Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Some evidence of correct units is required.	The student has applied trigonometric relationships, demonstrating relational thinking in solving problems. The student has related their findings to the context or communicated their thinking using appropriate mathematical statements. Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Correct units are required.	The student has applied trigonometric relationships, demonstrating extended abstract thinking in solving problems. The student has used correct mathematical statements or communicated mathematical insight. Any appropriate and correct rounding is acceptable (including truncation) and does not need to be stated. Correct units are required.			
A Block of Land Correct radian measure and correct approach.	Correct calculations (ignore minor error) and the answer given in context.	Method correctly communicated and answer completely correct within limits of accuracy. Comparison with 6900 m ² made.			
<i>Lighthouses and Ships</i> <i>Angles all correct and at least one</i> <i>length correct.</i>	<i>Correct calculations (ignore minor error).</i>	Answer correct with good communication and context.			
Width of Stream Tangent expressions and Pythagoras correctly expressed but not solved.	<i>Approach correct and x and y eliminated.</i>	Answer for width correct with good communication and context.			
Sufficiency. Overall students require:					
Two or more Achievement questions or better for overall Achievement.					

Two or more Merit questions or better for overall Merit.

Two or more Excellence questions or better for overall Excellence.